Title (Units):PHYS 4047ADVANCED FUNCTIONAL MATERIALS (3, 3, 1)

- **Course Aims:** This course aims to provide a broad base on structures and properties of advanced materials and their applications. Topics cover structures, properties and functionality of materials including metals, ceramics, polymers, magnetic materials and carbon-based nanomaterials.
- **Pre-requisite:** Year 4 standing or consent of instructor

Course Reviewed by: Dr. Zhifeng Huang and Prof. Kok-wai Cheah

Course Intended Learning Outcomes (CILOs):

No.	Upon successful completion of this course, students should be able to:
1.	Describe structures of materials and structural effect on mechanical, magnetic,
	electronic, thermal and optical properties.
2.	Compare and contrast the physics of materials such as metals, ceramics, polymers,
	magnetic materials, and low-dimension carbon nanomaterials.
3.	Appraise the applications and functionality of advanced materials.

Teaching & Learning Activities (TLAs)

CILOs	TLAs will include the following:
1-3	Students will learn from lectures on the concepts and related issues of the topics
	outlined in the course content.
1-3	Emphasis is placed on the structural effect on diverse properties of advanced materials
	and their applications.
1-3	By doing assignment problems and quizzes, students can study the physics of advanced
	materials.
1-3	Students will be grouped to select a project topic related to current development of
	advanced materials. Using the knowledge taught in this course, they will study the
	structures, properties and applications of the selected materials. Oral presentation and
	report will be required to fulfill the course project.

Assessment:

No.	Assessment	Weighting	CILOs to be	Remarks
	Methods		addressed	
1	Continuous	25%	1-3	Assignments and quizzes are designed to
	Assessment			measure how well the students have
	(assignments			learned the basic principles and
	and quizzes)			applications of various advanced materials.
2	Course	25%	1-3	Oral presentation and report are graded
	projects			based on students' understanding on the
				structures, properties and applications of
				the studied materials.
3	Final	50%	1-3	Final Examination is designed to see how
	Examination			far students have achieved their intended
				learning outcomes. Questions will
				primarily be analysis and skills based to
				assess the student's versatility in
				answering problems in topics taught in this
				course.

Learning Outcomes and Weighting:

Content	LO No.	Teaching (in hours)
I. Principle Properties of Materials	1	4
II. Metals	1-3	7
III. Ceramics	1-3	6
IV. Polymers	1-3	6
V. Magnetic materials	1-3	6
VI. Carbon-based nanomaterials	1-3	7

Textbook: None

References:

- 1. James A. Newell, Essentials of Modern Materials Science and Engineering, John Wiley, 2009.
- 2. Gabor L. Hornyak, Harry F. Tibbals, Joydeep Dutta, John J. Moore, Introduction to Nanoscience & Nanotechnology, CRC Press, 2009.
- 3. William D. Callister, Materials Science and Engineering: An Introduction, John Wiley, 2007.
- 4. Wolfram Herqert, Arthur Ernst, Markus Dane, Computational Materials Science: From Basic Principles to Material Properties, Springer-Verlag Berlin Heidelberg, 2010.
- 5. J. C. Anderson, Keith D. Leaver, Rees D. Rawlings, Patrick S. Leevers, Materials Science for Engineers, Chapman and Hall, 2003.
- 6. M. G. Kanatzides, S. D.Mahanti, T. P. Hogan, edit: Chemistry, Physics and Materials Science of Thermalelectric Materials, Kluwer Academic/Plenum Publisher, N. Y. 2003

Course Content in Outline:

	Topic	Hours
I.	Principle Properties of Materials	4
	A. Atomic structure	
	B. Atomic bonding in solids	
	C. Defects and impurities	
II.	Metals	7
	A. Crystal structures	
	B. Mechanical properties	
	C. Thermal properties	
	D. Metallic alloys	
III.	Ceramics	6
	A. Crystal structures	
	B. Silicate ceramics	
	C. Mechanical properties	
	D. Applications	

IV.	Polymers	6
	A. Molecular structures	
	B. Copolymers	
	C. Polymer crystals	
	D. Defects in polymers	
V.	Magnetic Materials	6
	A. Diamagnetism and paramagnetism	
	B. Ferromagnetism	
	C. Antiferromagnetism and ferrimagnetism	
	D. Magnetic storage	
	E. Superconductivity	
VI.	Carbon-based nanomaterials	7
	A. Types and bonding of carbon materials	
	B. Fullerenes	
	C. Carbon nanotubes	
	D. Graphene	